Uka Tarsadia University (Diwaliba Polytechnic)

Diploma in Computer Engineering

Assignment (Information Security)

Unit 1: Introduction to Information Security

- 1. Write down difference between active attacks and passive attacks.
- 2. Define: Information security.
- 3. Define: Authentication and Integrity
- 4. Which attacks are hard to detect? Why?
- 5. Explain OSI security architecture model.
- 6. Describe CIA.
- 7. Enlist types of authentication. Explain them in detail.
- 8. Enlist types of active attack.
- 9. Explain following terms each with a suitable diagram:
 - a. Release of message contents
 - b. Traffic analysis
- 10. What is the requirement of security?
- 11. Explain following terms each with a suitable diagram:
 - a. Masquarade
 - b. Denial of service

Unit 2: Encryption Techniques

- 1. Explain symmetric cipher model with a suitable diagram.
- 2. Describe steganography in brief.
- 3. Find the cipher text for following plain text and key using hill cipher:

Key:
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

4. Find the cipher text for following plain text and key using caesar cipher:

PT: Computer Engineering

Key: 7

- 5. Differentiate substitution technique and transposition technique.
- 6. Find the cipher text for following plain text and key using rail fence technique:

PT: Work for it more than you hope for it.

Key: 3

7. Find the cipher text for following plain text and key using columnar technique:

PT: Do not stop until you are proud.

Key: worth

8. Find the cipher text for following plain text and key using playfair cipher:

PT: Hill cipher is a multi-letter cipher.

Key: cryptography

9. Find the cipher text for following plain text and key using polyalphabetic cipher:

PT: One time pad uses random keys.

Key: accept

Unit 3: Block Ciphers

- 1. What is confusion and diffusion?
- 2. Explain avalanche effect.
- 3. What is the size of plaintext and how many numbers of round used in DES algorithm?
- 4. Given 10 bit key K=1110000111. Determine k1, k2 where

$$P8 = 637485109$$

by using S-DES key generation method.

- 5. Write down the strength of DES.
- 6. Given the following data find cipher text using S-DES encryption algorithm:

IP								
2	6	3	1	4	8	5	7	

	IJ	P-1					
4	1	3 5	7	2	8	6	

	I	P4		
2	4	3	1	

E/P	[Г1	0	3	2]	ı	Γ0	1	2	3]	
4 1 2 3 2 3 4 1	S0=	3	2	1	0	, S1=	2	0	1	3	
		0	2	1	3	<i>,</i>	3	0	1	2	
		L3	1	3	- 21		LZ	1	U	- 31	

Plaintext = 10101001, K1 = 10100100, K2 = 01000011.

- 9. Explain block cipher.
- 10. What is timing attack?
- 11. Draw the diagram of single round of feistel structure.

Unit 4: Public Key Cryptography

- 1. List out ingredients of public key encryption scheme.
- 2. Write down difference between private key and public key algorithm.
- 3. Draw the diagram of encryption with private key.
- 4. Brief the concept of key exchange.
- 5. What is probable message attack?
- 6. Find n and \emptyset (n), where p = 3 and q = 11.
- 7. What is a meet-in-the-middle attack?
- 8. Explain the concept of public key cryptosystem.
- 9. Explain public key cryptosystem to achieve secrecy.
- 10. Explain simple secret key distribution.
- 11. Explain the concept of public announcement of public keys and publicly available directory.
- 12. Perform encryption and decryption using RSA system for p = 11, q = 3, e = 3 & M = 4. Also show the steps to generate the public and private keys.
- 13. Explain public-key authority.

Unit 5: Message Authentication And Hash Function

- 1. Enlist applications of cryptographic hash function.
- Describe MAC.
- 3. What are the requirements of hash function?
- 4. Enlist types of attacks addressed by message authentication.

- 5. Describe strong collision resistance.
- 6. Describe one way property in hash function.
- 7. Draw and explain the following statements:
 - a. Message authentication and confidentiality tied to plaintext
 - b. Message authentication and confidentiality tied to ciphertext
- 8. Describe the requirements of MAC function.
- 9. Describe basic authentication function.
- 10. Enlist and explain various ways in which hash code can be used to provide message authentication with suitable diagram.

Unit 6: Digital signatures and Authentication protocols

- 1. Explain requirements of digital signature.
- 2. Describe arbitrated digital signature technique.
- 3. Explain direct digital signature technique.
- 4. Draw the diagram for DSA approach to provide digital signature.
- 5. Enlist steps of digital signature algorithm.
- 6. Write down difference between RSA approach and DSA approach.
- 7. Write down use of authentication protocols.
- 8. How to provide one-way authentication in email?
- 9. List any two properties a digital signature should essentially have.
- 10. What are some threats associated with a direct digital signature scheme?